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Finding multidimensional nondirect product discrete variable representations (DVRs) of Hamiltonian operators
is one of the long standing challenges in computational quantum mechanics. The concept of a “DVR set”
was introduced as a general framework for treating this problem by R. G. Littlejohn, M. Cargo, T. Carrington,
Jr., K. A. Mitchell, and B. Poirier (J. Chem. Phys.2002, 116, 8691). We present a general solution of the
problem of calculating multidimensional DVR sets whose points are those of a known cubature formula. As
an illustration, we calculate several new nondirect product cubature DVRs on the plane and on the sphere
with up to 110 points. We also discuss simple and potentially very useful finite basis representations (FBRs),
based on general (nonproduct) cubatures. Connections are drawn to a novel view on cubature presented by
I. Degani, J. Schiff, and D. J. Tannor (Num. Math.2005, 101, 479), in which commuting extensions of
coordinate matrices play a central role. Our construction of DVR sets answers a problem left unresolved in
the latter paper, namely, the problem of interpreting as function spaces the vector spaces on which commuting
extensions act.

1. Introduction

The discrete variable representation, or DVR, is an important
computational approach in quantum mechanics. Among other
applications, it is used to calculate highly excited eigenfunctions
and large amplitude dynamics of nuclei in molecules within
the framework of the Born-Oppenheimer approximation. The
motivation for introducing DVRs is the difficulty of calculating
potential energy matrix elements. In a DVR algorithm, the basis
functions are localized and the entire potential energy matrix is
calculated at once, simply by evaluating the potential function
on a diagonalized coordinate matrix. The potential matrix is
then combined with the kinetic energy matrix to obtain a matrix
representing the Hamiltonian operator. The eigenvalues and
eigenfunctions of the Hamiltonian matrix give approximate
solutions of the time independent Schro¨dinger equation, while
quantum mechanical time evolution is approximated by using
the Hamiltonian matrix in the time dependent Schro¨dinger
equation. Comprehensive reviews of the DVR approach are
given in refs 2 and 3.

Although one-dimensional DVRs are well understood, the
construction of multidimensional DVRs beyond the obvious
“direct product” type is a subject of ongoing research. The first
step is to introduce a set of suitable,d variable, basis functions
φ1, ... ,φn, called the finite basis representation (FBR) functions.2

Typically, these are the set of all eigenfunctions of a simple
Hamiltonian up to a given energy. Suppose for a moment that
the coordinate matrices (Xi)ab ) 〈φa|x̂i|φb〉, i ) 1, ... , d, are
commuting. Then, their joint eigenfunctions form a DVR basis
of S ) span{φ1, ... ,φn}, and DVR points inRd are formed by
concatenating the eigenvalues of theXi, i ) 1, ... , d,
corresponding to each DVR basis function to form the vector
(λa1, ... , λad). Each DVR basis function is typically localized
in a neighborhood of the corresponding DVR point. The main

obstacle to devising DVRs onS is that the coordinate matrices
Xi, i ) 1, ... ,d, do not generally commute.

To avoid this problem of noncommuting coordinate matrices,
Littlejohn et al.4 introduced a general framework for multidi-
mensional DVRs which does not explicitly invoke coordinate
matrices. Their approach is based on the concept of “DVR sets”,
which consist of anN-dimensional function spaceS˜ together
with N points in the configuration space possessing the following
property: the projections toS˜ of the δ functions at theN
points are orthogonal. These points are then regarded as DVR
points, and normalizing the projected delta functions gives the
DVR basis functions. However, no general method for con-
structing multidimensional DVR sets was given in ref 4 or later
publications, apart from two special cases relying on sym-
metry.5,6

Littlejohn and Cargo made two observations5 which form the
basis for our development. The first is that usual choices of
function spaces (e.g., those spanned by typical FBR functions)
are generally too restrictive; we therefore need to carefully
extend them to obtain the spaceS˜ in a DVR set. The second
is that DVR sets correspond to cubatures (multidimensional
quadratures) evaluating exactly inner products onS˜: the
DVR points correspond to the cubature nodes, and the normal-
ization factors used to obtain DVR basis functions correspond
to cubature weights. Therefore, the construction of a DVR set
can begin from constructing (or receiving) anN point cubature
formula that evaluates exactly inner products on ann e
N-dimensional spaceS and then extendingS appropriately to
an N-dimensional spaceS˜ ⊇ S. The symmetry methods used
in refs 5 and 6 to obtain DVR sets are very elegant and im-
portant in relevant cases; however, they are also restrictive. For
example, the approach to calculating DVRs on the sphere in
ref 5 relies on rotation groups of the regular solids; therefore,
the number of nodes must belong to a specific set of integers
whose maximal member is 60. More generally, we would like
to have DVRs that are suited to problems with no special
symmetries.
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Here, we assume that a cubature formula is given and
formulate the problem of constructing the extension space
S˜ as a linear algebra problem, which is solved in full
generality. In this way, we construct eight new nonproduct DVR
sets for the plane and sphere based on cubature formulas with
no special symmetries. We also discussn × n cubature FBRs
of Hamiltonians, obtained by projectingN × N cubature DVR
Hamiltonian matrices to theφ1, ... ,φn basis ofS (n e N). Our
results indicate that if suitable cubature formulas were available
then such FBRs may outperform DVRs (see also ref 7). Ideally,
we would like to have DVRs and FBRs based on high degree
cubatures whose nodes are concentrated in relevant regions of
configuration space (e.g., low potential regions). However,
available cubatures are limited and the field is waiting for new
methods for constructing cubature formulas.

A new approach to the cubature construction problem was
presented in refs 8-10. It is based oncommuting extensionsof
coordinate matrices, which are formed by adding rows and
columns to noncommuting coordinate matricesXi. References
8-10 show that the eigenvalues and eigenvectors of commuting
extensions of coordinate matrices give the nodes and weights
of cubature formulas. Conversely, it is shown there that the
nodes of a known cubature formula give the eigenvalues of
commuting extensions of coordinate matrices, and the weights
participate in determining their joint eigenvectors. Thus, the
problem of calculating cubature formulas is equivalent to the
problem of calculating appropriate commuting extensions. Initial
attempts at solution yielded several new cubatures;8,9 however,
this approach is still largely unexplored.

Although DVR sets were introduced by Littlejohn et al. to
avoid relying on noncommuting coordinate matrices, it turns
out that appropriately defined coordinate matrices on the DVR
function spaceS˜ are actually commuting. This is so ifX̃1, ...
, X̃d, the coordinate matrices onS˜, are calculated using the
associated cubature formula, rather than the exact inner product.
Suppose thatS is a space of weighted degreeq polynomials
and that the DVR is associated with a cubature formula of degree
2q + 1. Then, in a suitable basis ofS˜, the X̃i are commuting
extensions of the noncommuting coordinate matricesXi on
S ⊂ S˜. This actually solves a problem that was left open in
refs 8 and 9. It was not known there how to interpret as a
function space the vector space on which commuting extensions
act. Here, theX̃i act on thefunctionspaceS˜. This observation
puts cubature DVRs in the same framework together with one-
dimensional quadrature DVRs. In one-dimensional quadrature
DVRs, the eigenvalues of the coordinate matrixX are the nodes
of a quadrature formula;11,12 in multidimensional cubature
DVRs, the joint eigenvalues of theX̃i are the nodes of a cubature
formula.

Apart from refs 5 and 6, we know only one other previous
publication on “nondirect product” multidimensional DVRs,
given by Dawes and Carrington in ref 13. The idea of ref 13 is
to find a basis ofS in which the coordinate matrices are almost
diagonal, that is, in which they have small off-diagonal entries.
Then, commuting approximations of the coordinate matrices are
obtained by discarding the small off-diagonal entries. The
resulting commuting matrices are regarded as the new coordinate
matrices. Theirn joint eigenvectors give the DVR basis
functions in S, and thed eigenvalues corresponding to each
eigenvector give the DVR nodes, which are points inRd. An
important advantage of the algorithm in ref 13 is that it can be
conveniently applied for generalS with large dimension;
however, the main limitation is the loss of accuracy associated
with discarding the off-diagonals. Note that the DVRs of ref

13 present an alternative to the framework given in ref 4; as far
as we can see, the DVR functions in ref 13 are generally not
projectedδ functions.

We now give a brief overview of the contents of this paper.
Section 2 reviews some preliminaries on which our subsequent
development is based: the basics of one-dimensional DVRs,
the DVR set framework introduced in ref 4, and some basic
facts from cubature theory including the relation with commut-
ing extensions described in refs 8-10. In section 3, we show
how to calculate multidimensional DVRs and FBRs based on
general, nonproduct, cubature formulas, and we show the
connection with the commuting extension formalism. In section
4, we show how our ideas can be used for obtaining cubature
DVRs and FBRs on the plane, and on the sphere. In section 5,
we review the existing types of multidimensional DVRs and
study their relations with our approach. In section 6, we give
numerical results obtained using cubature DVRs and FBRs.
Section 7 ends this paper with a summary of our main findings
and directions for future work.

2. Preliminaries

We begin by setting notation and terminology. LetΩ be a
region inRd, and letH be the Hilbert space of square integrable
functions onΩ, H ) L2(Ω). The Hamiltonian operator on
H is Ĥ ) T̂ + V̂, whereT̂ andV̂ are the kinetic and potential
energy operators, respectively. The potential operator is deter-
mined by a potential functionV(x); then, V̂ ) V(x̂), or in the
time dependent case,V̂ ) V(x̂, t). Ω, which is called the
configuration space, can be quite general. Particularly, in section
6, we give numerical examples forΩ ) R2 and Ω ) S2, the
surface of the unit sphere inR3. We are interested in solving
the Schro¨dinger eigenproblem, that is, findingψ ∈ H, E ∈ R,
such thatĤψ ) Eψ, and the time dependent Schro¨dinger
equation (TDSE)ip(∂/∂t)ψ ) Ĥψ, whose solutions describe the
dynamics of a quantum mechanical system with Hamiltonian
Ĥ.

An important approach for numerical solution of these
problems is based on projection to a finite dimensional subspace
of H, thereby replacing the full Hamiltonian operator with a
finite matrix. Introducing suitably chosen orthonormal functions
φ1, ... , φn in H, we obtain then-dimensional subspaceS )
span{φ1, ... , φn}. We can then construct then × n matrix H
with entriesHab ) 〈φa|Ĥ|φb〉. The Schro¨dinger eigenproblem
is thus approximated by the problem of finding the eigenvalues
and eigenvectors ofH, and the TDSE is approximated by the
ODE ipŭ ) Hu, whereu ∈ Cn is the coordinate vector of a
function inS. A technique widely used in the calculation ofH
is based on splitting the HamiltonianĤ. Write Ĥ ) Ĥ0 + V̂ -
V̂0, whereĤ0 ) T̂ + V̂0. Thus, the matrixH can be decomposed
to the sumH0 + V - V0, where (H0)ab ) 〈φa|Ĥ0|φb〉 and (V -
V0)ab ) 〈φa|(V̂ - V̂0)|φb〉. If they are known, eigenfunctions of
Ĥ0 can be chosen as the basis functionsφa; thus,H0 is a diagonal
matrix with diagonal entries equal to eigenvalues ofĤ0. In other
cases, the eigenfunctions ofĤ0 are not used; still, the functions
φa are chosen so that calculation of the matrixH0 (or an
approximation) is not too difficult. Moreover, for a particular
choice ofS and Ĥ0, the matrixH0 is calculated once and is
then used for different problems given by different potentials
V̂.

The difficulty lies in calculating the matrixV - V0 involving
costly, generally multidimensional, integrals which are specific
for each problem. Note that in our notationV andV0 aren × n
matrices,V(x) andV0(x) are potential functions, andV̂ ) V(x̂)
andV̂0 ) V0(x̂) are operators onH . For simplicity, we hence-
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forth replace all appearances ofV - V0 by V; similiarly,
V(x) - V0(x) is replaced byV(x) andV̂ - V̂0 is replaced byV̂.
The problem of calculating the matrixH is essentially the
problem of calculating (or approximating) the matrixV

2.1. One-Dimensional DVRs.Here, we summarize the basics
of one-dimensional DVRs which were introduced by Light et
al.14 based on earlier work by Harris et al.1 and Dickinson and
Certain.12 Shizgal and Blackmore have independently considered
similiar methods.15 Our point of view is similiar to that of Kanfer
and Shapiro16 who emphasized the role of the coordinate matrix
on general spacesS.

To address the difficulty of approximating the potential matrix
V, one-dimensional DVRs replace the operatorx̂ with then ×
n matrixX defined byXab ) 〈φa|x̂|φb〉. X is Hermitian, and there
exists a unitaryn × n matrix Q and a diagonaln × n matrix Λ
such that

We can then define then × n matrix V̌ ) V(X) ) QV(Λ)Q† or

whereλ1, ... ,λn are the eigenvalues ofX. V̌ is an approximation
of V defined in eq 1 and the matrix

is an approximation of the Hamiltonian in the basis{φ1, ... ,φn}
of S. V̌ andȞ correspond to what is often called in the literature
VFBR andHFBR.

The eigenvectors ofX correspond to the following eigen-
functions inS: fa(x) ) ∑ b)1

n Qbaφb(x), a ) 1, ... , n. The fa
comprise an orthonormal basis ofS which is called the DVR
basis.14 In this basis,X is represented by the diagonal matrixΛ
and V̌ is represented by the diagonal matrixV(Λ). This is the
source of the DVR name (discrete variable representation): the
“continuum variable”x̂ is replaced by the “discrete variable”
Λ to obtain the DVR approximation of the potential operator.
The DVR basis functionsfa are typically peaked at the
corresponding eigenvalueλa and decay as|x - λa| grows. In
the DVR basis, the Hamiltonian is represented by

For a givenS, the matrixX can be calculated and diagonal-
ized to obtainΛ and Q once and for all. Hence, calculating
HDVR or Ȟ amounts to evaluating the potential function on a
set of n points and calculating the matrix productsQ†H0Q in
the DVR basis (eq 5) orQV(Λ)Q† in the FBR basis (eq 4);
direct evaluation of the integrals in eq 1 is avoided. The quality
of the DVR/FBR approximations (note that in one-dimensional
problems the DVR and FBR correspond to different bases of
the same function spaceS; thus, they lead to identical energy
eigenvalues) depends on the choice ofS. Generally, the func-
tions φa are chosen to satisfy the same boundary conditions,

and possibly other properties (e.g., symmetry) of the exact
eigenfunctions ofĤ. The question of convergence with increas-
ing n is discussed in some detail in ref 4.

An important class of one-dimensional DVRs is based on
orthogonal polynomials. Suppose we are given an interval,
Ω ⊆ R, and a nonnegative weight function,w, such that the
integrals∫Ω w(x)xm dx exist for all naturalm. Then, it is possible
to construct a sequence of orthogonal polynomialsea, a ) 1, 2,
..., with degree (ea) ) a - 1, which satisfy∫Ω w(x) ea(x) eb(x)
dx ) δab. The weighted polynomialsφa ) xwea are orthonor-
mal with respect to the usual inner product inH, 〈φa|φb〉 ) δab.
One-dimensional DVRs are then constructed withS ) span-
(φ1, ... ,φn). Denoting the space of degreeq polynomials onΩ
by P q

Ω, we see thatS ) xw P q
Ω with q ) n - 1 (recall that

n ) dim S ). The weighted polynomial spaces to which we
previously referred are obtained in this way. Zero boundary
conditions are satisfied by a suitable choice of weight function
w(x).

There are intimate connections between polynomial DVRs
in one dimension and Gaussian quadrature. It is shown in refs
11 and 12 that then DVR pointsλa (eigenvalues ofX) are the
nodes in the degree 2n - 1 ()2q + 1) Gaussian quadrature
formula for the intervalΩ and weight functionw and that the
matrix Q from eq 2 is given by

whereωb are the weights in the Gaussian quadrature formula.
For a simpler proof of these facts, see ref 2; the discussion of
Gaussian quadrature in refs 8, 9, and 18 is also very relevant.
Due to these relations, this type of DVR is commonly called
quadrature DVR. Note that eqs 3 and 6 imply that in this case
the matrix element (V̌)ab is the 2n - 1 degree Gaussian
quadrature approximation of the matrix elementVab.

It is worth noting that the applied mathematics literature
discusses the “sinc collocation method”, of which sinc DVR
(see ref 4 and references therein) is a particular case. Of
particular interest are the results on convergence rates and on
the passage from infinite to finite intervals (see Sugihara and
Matsuo19 and references therein).

2.2. Multidimensional DVR Sets.The basis for our discus-
sion is the notion of DVR set as introduced in ref 4. Our
interpretation of DVR sets emphasizes the extension of an initial
function spaceS to a larger spaceS˜ so that appropriately
defined coordinate matrices onS˜ are commuting. For clarity,
we introduce the following index convention:

(i) Indexesa andb run from 1 up ton ) dim S.
(ii) Indexesi, j, andk run from 1 up tod.
(iii) Indexes R, â, and γ run from 1 up toN ) dim S˜,

N g n.
In multidimensional problems, the potential is a function of

the operatorsx̂1, ... , x̂d, with the associatedn × n coordinate
matricesX1, ... ,Xd, (Xi)ab ) 〈φa|x̂i|φb〉. Suppose, for the moment,
that these matrices commute, [Xi, Xj] ) 0 for all i, j. Defining
V̂ ) V(X1, ... , Xd) and simultaneously diagonalizing the
commuting coordinate matricesXi ) QΛiQ†, we can writeV̂
as in eq 3 but now then pointsλa are vectors withd entries,
(λa)i ) (Λi)aa, that is,V̂ ) QV(Λ1, ... , Λd)Q†. If the λa are in
Ω, then multidimensional DVRs could be constructed in this
way (evaluation ofV(x) outsideΩ is often meaningless). Direct
product DVRs, which were until recently the only known
multidimensional DVRs, can be formulated precisely in this
way.

Qab ) xωbea(λb) (6)

(V)ab ) 〈φa|V̂|φb〉 ) ∫Ω
φa
/(x) V(x) φb(x) dx

a, b ) 1, ... ,n (1)

X ) QΛQ† (2)

V̌ ) Q(V(λ1) 0 ‚‚‚ 0

0 V(λ2) ‚‚‚ l

l ‚‚‚ ‚‚‚ 0

0 ‚‚‚ 0 V(λn)
) Q† (3)

Ȟ ) H0 + V̌ (4)

HDVR ) Q†ȞQ ) Q†H0Q + V(Λ) (5)
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Working with a domainΩ and a spaceS which are not of
the direct product type, we are faced with the problem that the
Xi do not generally commute and therefore cannot be simulta-
neously diagonalized. This observation led Littlejohn et al.4 to
a generalized notion of DVR sets. LetS˜ be anN-dimensional
subspace ofH such that S ⊆ S˜ and letφ1, ... ,φN be ortho-
normal basis functions. Letλ1, ... ,λN be points inΩ and define
the projected delta functions∆R ≡ ∑ γ)1

N |φγ〉〈φγ|δ(x - λR)〉 )
∑ γ)1

N
φγ
/(λR)φγ. Note that

that is, the projection of∆R on ∆â is obtained by evaluating it
on λâ.

Definition 1 (adapted from ref 4). The spaceS˜ and the
pointsλ1, ... , λN are called a DVR set if

In this case, we call fR ) (1/||∆R||)∆R DVR functions, and the
λR are called DVR points.

The discussion of DVR approximation accuracy in ref 4 is
based on the assumption thatS ) S˜ and consists of all
eigenfunctions ofĤ0 up to a given energy. Here, we retain the
latter property ofS but use “larger” spacesS˜ ⊃ S.

Equation 8 implies thatfR is zero on all DVR points except
its own, wherefR(λR) ) ||∆R||. Therefore, eq 7 implies that the
DVR functions are orthonormal; hence, they form an orthonor-
mal basis ofS˜. Therefore, 〈g|h〉 ) ∑ γ)1

N (1/||∆γ||2)g*(λγ)
h(λγ) for all g, h ∈ S˜; that is, if S˜ andλ1, ... , λN are a DVR
set, then this sum is a cubature rule evaluating exactly inner
products inS˜. An important observation that was not dis-
cussed in refs 5 and 6 is that we can defined coordinate matrices
on S˜ using the cubature rule above rather than the exact inner
product. In the DVR basis, they are (Λi)Râ ) ∑ γ)1

N (1/||∆γ||2)
f R
/(λγ)(λγ)i fâ(λγ) ) (λR)iδRâ. These matrices are simulta-

neously diagonal (in the DVR basis), and we can defineV(Λ1,
... , Λd) as the DVR approximation of the potential operator.
This is equal to diag(V(λ1), ... ,V(λN)), the DVR potential matrix
in ref 4, which is defined without invoking coordinate matrices.

2.3. Cubature Formulas and Commuting Extensions.Our
discussion of cubature DVRs and FBRs will rely on some basic
notation and facts of multivariable polynomials and cubature.
Commuting extensionsof coordinate matrices are particularly
important for our discussion.

The degree of a monomialx1
m1‚ ... ‚xd

md in d variables is
m1 + ... + md, and the degree of a polynomial ind variables is
the maximal of the degrees of the constituent monomials. We
denote the space of polynomials with complex coeficients, in
d variables restricted toΩ, and of degree up toq, by P q

Ω.

Generally, dimP q
Ω ≡ n ) (d + q

d ); however, in some cases,
the monomials are not independent and the dimension is smaller.
Consider for example the space of polynomials in three variables
on the surface of the sphereΩ ) S2, where the relationz2 )
1 - x2 - y2 holds. We later show that dimP q

S2
) (q + 1)2

rather than(3 + q
3 ) ) (q + 3)(q + 2)(q + 1)/6. By saying that

S is a space of weighted polynomials, we mean thatS )
xw P q

Ω, wherew(x) g 0 is an appropriate weight function.
Definition 2. Suppose we haVe N pointsλ1, ... ,λN ∈ Rd and

N weightsω1, ... , ωN ∈ R such that

for all f ∈ P D
Ω and such that there exist f∈ P D+1

Ω for which
eq 9 is not true. Then, the sum on the lhs is called a degree D
cubature formula for the regionΩ and weight function w(x).

The λ1, ... , λN are often called nodes (this term is justified,
since the points of cubature formulas are common zeros of
quasi-orthogonal multivariable polynomials; see Xu10); we
consider only cubature formulas with positive weights whose
nodes are inΩ. Estimates on the number of nodes are discussed
in ref 8 and references therein. Particularly, the following
estimate ofN in a degree 2q + 1 formula is given there:

It is obtained by requiring that the number of parameters
defining the formula will be the same as dimP 2q+1

Ω . A similiar
calculation for the sphere givesN ≈ (4/3)(q + 1)2. Note
however that parameter counting just gives a guideline; gener-
ally, cubature formulas can have either a smaller or larger
number of nodes.

Commuting extensions are a central object in cubature theory;
Definition 3 (from ref 8). We say the N× N matrices X̃1,

X̃2, ... , X̃d are N × N commuting extensions of the n× n
matrices X1, ... , Xd (N g n) if the top left n× n block in X̃i is
Xi, and the matrices X˜ 1, ... , X̃d pairwise commute. If the Xi and
X̃i are symmetric (Hermitian), we say that the X˜ i are symmetric
(Hermitian) commuting extensions of the Xi.

Given a domain,Ω, and weight function,w, it is shown in
refs 8-10 that knowing symmetric commuting extensions of
coordinate matrices onP q

Ω is equivalent to knowing a degree
2q + 1 cubature formula forΩ and w (extension to the
Hermitian case is trivial). However, refs 8-10 do not show how
to interpret commuting extensions as operators on function
spaces; our construction of DVR sets in the next section also
solves this problem, thereby showing that cubature DVRs based
on odd degree formulas are generalizations of one-dimensional
quadrature DVRs.

For clearer notation, we define

3. Obtaining Multidimensional DVRs and FBRs from
Cubature Formulas

Here, we give the general solution for the problem of
calculating DVR sets from known cubature formulas. Further-
more, we consider the use of cubature formulas to obtain
potentially very efficient FBRs of Hamiltonians (see also ref
7).

3.1. Calculating Multidimensional Cubature DVR Sets.
In section 2.2, we saw that a DVR set generates a cubature
formula giving exactly inner products inS˜. The converse is
also true; given such a formula, the∆R associated with the
cubature points are orthogonal and therefore give a DVR set.
The mathematical literature provides cubature formulas giving
exactly inner products in spacesS of multivariable weighted
polynomials. However, except for special cases, the number of
cubature pointsN must be greater thann ) dim(S ). To generate
a DVR set with the cubature points, we need to extendS to a
larger spaceS˜ on which the cubature formula still evaluates

N ≈ |-||
1

d + 1 (d + 2q + 1
d )

-|||
(10)

〈g|h〉w ≡ ∫Ω
w(x) g*(x) h(x) dx (11)

〈g|h〉c ≡ ∑
R)1

N

ωRg*(λR) h(λR) (12)

〈∆â|∆R〉 ) ∆R(λâ) (7)

∆R(λâ) ) 〈∆R|∆R〉δRâ (8)

∑
R)1

N

ωR f(λR) ) ∫Ω
w(x) f(x) dx (9)
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inner products exactly. The full solution of this problem is given
in ref 17; here, we give an outline.

Problem 1. Suppose we are giVen (a) a degree 2q or 2q+
1 cubature formula with nodesλ1, ... , λN ∈ Ω and positiVe
weightsω1, ... , ωN and (b) an n1-dimensional function space
B with the inner product〈‚|‚〉w defined in eq 11, and such that
P q

Ω ⊆ B. Find, or proVe, that there do not exist, N functions
u1, ... , uN ∈ B such that

If a solutionuR, R ) 1, ... ,N, is found, then the DVR functions
fR of definition 1 arefR ) xwuR and the DVR function space
is S˜ ) xw span{u1, ... , uN}. A DVR set consisting of the
nodesλ1, ... , λN and the spaceS˜ will be called a cubature
DVR. Note that theuR are generalizations of the familiar
interpolation polynomials on Gaussian quadrature nodes: Item
1 specifies their values on the nodes so that〈uR|uâ〉c ) δRâ
(recall eq 12). Item 2 implies that〈uR|uâ〉c ) 〈uR|uâ〉w; that
is, the cubature formula gives exactly inner products in span-
{u1, ... , uN}. Note also that item 3 implies thatS˜ is an
extension ofS ) xwP q

Ω, that is,S ⊂ S˜.
Xu considered a similiar problem obtained by dropping item

2 (see ref 10, p 45). His analysis does not give a full solution;
however, it reveals additional properties (beyond the scope of
this text) for the cases in which a solution is found. The approach
described here is different: using only linear algebra techniques,
problem 1 is solved fully.

Let e1, ... , en, en+1, ... , en1 be an orthonormal basis ofB
(with respect to〈‚|‚〉w) in which the firstn elements form an
orthonormal basis ofP q

Ω. We use boldface letters to denote
the vector of coordinatesv corresponding to the functionV, while
taking the liberty of denoting function spaces and the isomorphic
spaces of coordinate vectors by the same symbol. As in ref 10,
the starting point of our discussion is the sampling operator on
the cubature nodesF: B f CN defined byF(f) ) (f(λ1), ... ,
f(λN))T, f ∈ B. TheN × n1 matrix representingF in our chosen
basis is

Given any vectorv ∈ B, the vectorΦv ∈ CN contains the values
of the corresponding functionV at the cubature nodes. Problem
1 is equivalent to the following.

Problem 2. Find an n1 × N matrix U such that

Once a solutionU of problem 2 is found, the corresponding
solution of problem 1 isuR ) ∑ κ)1

n1 UκReκ. Note that item 3
simply means that the our firstn basis vectorse1, ... ,en (on the
rhs) are in the space spanned by the columns ofU. We continue

assuming rank(Φ) ) N, which is a necessary condition for the
existence of a solution.

Writing Y ) ( P q
Ω x null(Φ))⊥, we can decomposeB:

Let Y be ann1 × (N - n) matrix whose columns form an

orthonormal basis ofY, and let E ) ( In×n
O(n1-n)×n) whose

columns are an orthonormal basis ofP q
Ω. Then,Φ(E, Y) (this

is the matrix productΦ‚(E, Y)) is an invertibleN × N matrix,
and if W is the unique solution of

thenU ) (E, Y)Wsatisfies items 1 and 3 of problem 2. However,
the columns of such aU will generally not be orthonormal. To
resolve the problem, we introduceK, ann1 × (n1 - N) matrix
whose columns form an orthonormal basis of null(Φ). ThenU
) (E, Y + KC)W satisfies items 1 and 3 of problem 2 for any
(n1 - N) × (N - n) matrix C; that is, we can modifyY with
any elements from null(Φ) without compromising a solution
of items 1 and 3 in problem 2. To satisfy item 2, we require
that IN×N ) U†U ) W†(E, Y + KC)†(E, Y + KC)W. Using the
relationsE†E ) In×n, Y†K ) O(N-n)×(n1-N), Y†E ) O(N-n)×n, K†K
) I(n1-N)×(n1-N), andW-1 ) ω1/2Φ(E, Y), and using the fact that
the cubature formula has a degree of at least 2q, we obtain the
following problem which is equivalent to problem 2.

Problem 3.Find an (n1 - N) × (N - n) matrix C satisfying
the following equations:

where I is the (N- n) × (N - n) identity matrix.
In our basise1, ... , en1 of B, the bilinear form〈‚|‚〉w is

represented by then1 × n1 identity matrix, while 〈‚|‚〉c is
represented byΦ†ωΦ. Thus, eq 16 requires that〈f|g〉w ) 〈f|g〉c

if f and g are in the space spanned by the columns of (Y +
KC), while eq 17 requires the same whenf ∈ P q

Ω.
The solution of eqs 16 and 17 is based on the singular value

decompositionC ) LDR†. Equation 16 determinesD and R
uniquely up to unitary transformations preserving the eigens-
paces ofY†Φ†ωΦY. Multiplying both sides of eq 17 byRD-1

(or an appropriate interpretation ofD-1 in the case of zero
singular values) gives an equation thatL must satisfy. This
generally has infinitely many solutions which all giveU ) (E,
Y+ KC)W, solutions of problem 2. Figure 11 gives pseudocode
describing the full solution process; Matlab code can be
downloaded from ref 17. In the special case that our cubature
formula has degree 2q + 1 and rank(Φ) ) N for B ) P q+1

Ω ,
the solution of problem 3 is very simple. Equation 17 is
automatically satisfied, with both sides equal to zero (in this
case, eq 17 equates the integrals of polynomials of degree at
most 2q + 1 with their cubature evaluations, which are exact),
and eq 16 is easily solved with a free choice of anyL with
orthonormal columns. The cubature formula used to calculate
the DVR set in ref 5 (briefly reviewed in section 5.3) is of this
type.

Let H 0
B be the projection ofĤ0 to xwB, (H 0

B )κκ′ )
〈xweκ|Ĥ0|xweκ′〉, κ, κ′ ) 1, ... , n1. Then, the cubature DVR
representation of the Hamiltonian operator onS˜ is

1. uR(λâ) ) δRâ(1/xωR)

2. 〈uR|uâ〉w ) δRâ

3. P q
Ω ⊆ span{u1, ... , uN}

Φ ) (e1(λ1) ‚‚‚ en1
(λ1)

e1(λ2) ‚‚‚ en1
(λ2)

l l
e1(λN) ‚‚‚ en1

(λN)
) (13)

1. ΦU ) ω-1/2, whereω ) diag(ω1, ... ,ωN) .

2. U†U ) IN×N.

3. There is an N× n matrix X such that
UX ) (O(n1-n)×n

In×n ) .

B ) P q
Ω x Y x null(Φ) (14)

Φ(E, Y)W ) ω-1/2 (15)

I + C†C ) Y†Φ†ωΦY (16)

E†KC ) E†Φ†ωΦY (17)
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If the cubature formula has degree 2q + 1, then the solution
of problem 1 also solves a problem left open in ref 8: how to
interpret the commuting extensions (see definition 3) associated
with an odd degree positive weight cubature formula as
operators on function spaces. Consider an orthonormal basis
φ1, ... ,φn, φn+1, ... ,φN of S˜ in which the firstn functions are
φa ) xwea, a ) 1, ... ,n; these functions form an orthonormal
basis ofS ) xwP q

Ω. We define the diagonal DVR coordinate
matrices by (Λi)Râ ) 〈uR|x̂i|uâ〉c i ) 1, ... ,d. In the basis{φR},
they are represented by the commuting matricesX̃1, ... , X̃d,
defined by (X̃i)Râ ) 〈φR/xw|x̂i|φâ/xw〉c. Our choice ofφ1, ... ,
φn and the fact that the cubature formula has degree 2q + 1
imply that the upper leftn × n block of eachX̃i is Xi, the ith
coordinate matrix onS defined by (Xi)ab ) 〈φa|x̂i|φb〉. That is,
the X̃i, which act on the DVR function spaceS˜, are commut-
ing extensions of theXi.

Currently, our choice of the spaceB and the matrixL (from
the singular value decomposition ofC) used to construct cuba-
ture DVRs is arbitrary. However, the connection with commut-
ing extensions of coordinate matrices suggests that the choice
of B andL should minimize the difference between the exten-
sion blocks of theX̃i and the corresponding blocks of the exact
coordinate matrices onS˜. Where relevant symmetry can pro-
vide an additional approach to the choice ofB andL, see ref 5.

It is interesting to compare the number of nodes in cubature
DVR with that of direct product DVR. Equation 10 gives the
typical number of nodes in a degree 2q + 1 cubature formula
giving a cubature DVR. The number of nodes in a DVR
obtained from a product cubature formula of the same degree
is (q + 1)d. When q is large, the leading term of each is

(1/(d + 1))(d + 2q + 1
d ) ∼ 2dqd/(d +1)! and (q + 1)d ∼ qd.

Thus, the ratio between the number of nodes of a cubature DVR
obtained from a high degree nonproduct formula and that of
the corresponding direct product DVR is expected to be
approximately 2d/(d + 1)!.

3.2. Calculating Cubature FBRs.An important advantage
of the DVR approach is the possibility of discarding DVR basis
functions peaked in high potential regions. This is particularly
true for direct product DVRs; their rectangular grids often cover
unnecessary regions of configuration space. However, imagine
that we could easily produce high degree cubature formulas for
general domains and weight functions. We could then potentially
tailor cubature DVRs to specific problems by an appropriate
choice ofΩ andw; discarding DVR basis functions would then
become less important. Moreover, the higher part of the
spectrum ofHDVR may contain large errors (see Figures 5 and
10) which can be avoided by projection to a low energy
subspace. All of this leads us to define cubature FBRs that
project theN × N DVR Hamiltonian matrixHDVR to then ×
n FBR Hamiltonian matrixȞ (n e N) acting on the subspace
S ⊂ S˜.

Suppose that for the regionΩ and weight functionw we have
a degree 2q or 2q + 1, N point, cubature rule with positive
weights whose nodes are all inΩ. Let {ea}, a ) 1, ... , n, be
any basis ofP q

Ω such that the functionsφa ) xwea are an
orthonormal basis ofS, and letfR be DVR basis functions of

S˜ as calculated in section 3.1. Since〈fR|φa〉 ) 〈uR|ea〉c )
xωRea(λR), the n × N projection matrix from the DVR
representation ofS˜ to the{φ1, ... , φn} representation ofS is

Projecting the DVR potential matrix toS, we obtainV̌, the
cubature FBR potential matrix:

The n × n cubature FBR Hamiltonian matrix is then

Note that to calculateV̌ andȞ we do not need to know DVR
basis functions; the projectionQ depends only on the cubature
nodes and weights and on the FBR basis ofS. As far as we
know, most existing FBRs (with the exception of ref 7) use
only product cubature formulas; here, there is no such restriction.
We can discard DVR basis functions also in cubature FBRs: if
some of the cubature nodes are in high potential regions, we
can reduce computational effort by deleting the corresponding
diagonal entries fromV(Λ1, ... , Λd), together with the
corresponding columns ofQ and rows ofQ†. Similiar ideas have
been used by Wang and Carrington7 in an FBR calculation of
the bend eigenfunctions of an HF trimer.

The dimension ofS is generallyn ) (d + q
q ) ∼ qd/d!. Recall

that typically we expectN ) dim(S˜) ∼ 2dqd/(d + 1)!, while
the leading term in the dimension of the corresponding direct
product DVR isqd. Thus, (n/dim DP DVR)∼ 1/d! andn/N ∼
(d + 1)/2d. These estimations, the simplicity of cubature FBRs
(no DVR functions needed), and the opening remarks of this
section indicate that if high degree cubature formulas were
available for relevant domains and weight functions then
cubature FBR may be the method of choice.

3.3. Currently Available Cubature Formulas. Here, we
survey existing cubature formulas for the domains relevant for
nuclear Hamiltonians in molecular problems.

The spacesS, andS˜, should be large enough for conver-
gence of eigenvalues and eigenfunctions within a given error
tolerance. Speaking very generally,n and N should be at

least several hundreds. Sincen ) (d + q
d ) ∼ qd/d! when S )

xwP q
Ω, this implies that, to be useful for calculations involv-

ing nuclear Hamiltonians in molecular problems, cubature DVRs
and cubature FBRs should be derived from formulas whose
degree 2q or 2q + 1 is at the very least several dozens or
hundreds. The domains appearing in such problems are varied,
but Ω ) Rd, Ω ) bounded rectangles inRd, Ω ) S2 (the unit
sphere), and Cartesian products of all of these domains are
especially important, as they describe bond stretching and
angular degrees of freedom. For example, in ref 20, the
configuration space chosen for a methane molecule (CH4) is Ω
) R4 × [0, π] × S2 × S2 (R4 for the stretches and the rest for
the bends). The boundary conditions are often zero forRd, while
on spheresS2 the functions are required to be continuous. At
present, the largest molecules for which high energy nuclear
eigenfunctions and large scale nuclear dynamics have been
calculated are four or five atom molecules.13 Counting degrees

HDVR ) U†H 0
BU + (V(λ1) 0 ‚‚‚ 0

0 V(λ2) ‚‚‚ l

l ‚‚‚ ‚‚‚ 0

0 ‚‚‚ 0 V(λN)
) (18)

QaR ) xωRea
/(λR) (19)

V̌ ) Q(V(λ1) 0 ‚‚‚ 0

0 V(λ2) ‚‚‚ l

l ‚‚‚ ‚‚‚ 0

0 ‚‚‚ 0 V(λN)
) Q†, (n × n) (20)

Ȟ ) H0 + V̌ (21)
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of freedom, we see that a DVR calculation withΩ a nine (or
more)-dimensional domain would be at the present frontier of
such quantum molecular computations.

Most very high order (i.e., more than a few dozen) formulas
in the cubature literature for the domains above are of the
product type. Notable exceptions are given by Lebedev and
Laikov21 and by Sloan and Womersley.22 Lebedev and Laikov
give cubatures forS2 of degree up to 131, whose number of
nodes is approximately2/3 the number of a product cubature of
the same degree. Moreover, in contrast to product formulas
where the nodes are concentrated at the poles, the nodes of
Lebedev-Laikov cubatures are (nearly) evenly distributed. The
FBR used in ref 7 is based on these cubatures. The nodes of
the cubatures given by Sloan and Womersley in ref 22 are also
evenly distributed over the sphere; however, their number is
double that of a product formula of the same degree. Several
other sources for existing cubature formulas are refs 23-26,
and the references therein. Table 1 lists the degrees and number
of nodes in the highest degree formulas in each of these
references; apart from ref 21 (and possibly also ref 22), this is
not sufficient for the needs of quantum molecular computations.
The potential usefulness of cubature formulas for DVR and FBR
calculations provides renewed motivation for finding new
nonproduct high order formulas. As mentioned in section 3.1,
this is equivalent (at least for odd degree formulas) to the
problem of calculating commuting extensions of coordinate
matrices.

4. Cubature DVRs and FBRs for the Plane and Sphere

Here, we describe cubature DVRs and FBRs for two
particular configuration spaces, the plane and the sphere.

4.1. Cubature DVRs and FBRs on the Plane.Consider a
quantum mechanical system whose configuration space is the
planeΩ ) R2 with wave functions which satisfy the boundary
conditions lim||x||f∞ ψ(x) ) 0. Orthonormal eigenfunctions of
the two-dimensional isotropic harmonic oscillator Hamiltonian,
Ĥ0 ) (1/2)(-∇2 + ||x||2), can provide a convenient basis. These
are of the formφa(x1, x2) ) exp(-(1/2)(x1

2 + x2
2)) hr1(x1) hr2(x2),

where thehri are Hermite polynomials of degreeri, and the
corresponding eigenvalue isEa ) 1 + r1 + r2. The mth
eigenspace (m ) 0, 1, ...) is the subspace spanned by all
eigenfunctions ofĤ0 whose eigenvalue ism + 1; its dimension
is equal tom + 1. We chooseS ) span{φa|Ea e q + 1}, that
is, all eigenspaces ofĤ0 up to and including theqth eigen-
space. It is easily seen thatS ) e-1/2||x||2P q

R2
, so given a posi-

tive weight degree 2q + 1 cubature formula,∫R2 e-||x||2f(x)dx
) ∑ R)1

N ωRf(xR) ∀f ∈ P 2q+1
R2

, our prescriptions can be applied;
this is a standard type of cubature formulas (see refs 23 and
24). To apply cubature DVR to a given HamiltonianĤ ) Ĥ0 +
V(x̂1, x̂2), we choseB ) P q1

R2
, increasingq1 until a solutionU

of problem 2 was found. Then, (H 0
B)κκ′ ) 〈φκ|Ĥ0|φκ〉 ) δκκ′Eκ

for κ, κ′ ) 1, ... , n1 ) dim(P q1

Ω) and HDVR ) U †H 0
BU +

V(Λ1, ... ,Λd) as in eq 18. Cubature FBR approximatesĤ by Ȟ
) H0 + Q†V(Λ1, ... , Λd)Q as in eq 21. In section 6.1, this is
applied to the Henon-Heiles problem.

4.2. Cubature DVRs and FBRs on the Sphere.Consider
quantum mechanical systems whose configuration space is the
unit sphere inR3, Ω ) S2, with Hamiltonian

Here, L̂2 ) (-1/(sin θ))(∂/∂θ)(sin θ (∂/∂θ)) -(1/(sin2 θ))‚
(∂2/∂æ2) is the square of the angular momentum operator
expressed in angular coordinates. The spherical harmonics are
eigenfunctions ofL̂2

We wish to construct cubature DVRs and FBRs on spaces
spanned by spherical harmonics withΩ ) S2. Recall that in
spherical coordinates theYl

m are given by

wherePl
m is a degreel - |m| polynomial. It is easily seen that

in Cartesian coordinates the spherical harmonicsYl
m are degree

l polynomials:

The inner product onS is given by

where dσ is the surface area measure, dσ ) sin θ dθ dæ. Using
the fact that the spherical harmonics are orthonormal〈Yl

m|Yl′
m′〉

) δll ′‚δmm′, it follows that S is an ∑l)0
q (2l + 1) ) (q + 1)2

dimensional subspace ofP q
S2

, the space of degreeq poly-
nomials in x1, x2, x3 on S2. However, the relationx3

2 )
1 - x1

2 - x2
2 implies thatP q

S2
is spanned by the monomials

{x1
µ x2

η x3
δ|µ + η + δ e q, δ ) 0 or 1}. Therefore,P q

S2
is a

direct sum of the following two subspaces: the space of all
polynomials inx1, x2 of degree at mostq and the space of all
polynomials inx1, x2 of degree at mostq - 1 multiplied byx3,

that is,P q
S2

) P q
R2

x x3P q-1
R2

. Thus, dimP q
S2

) (2 + q
2 ) +

(1 + q
2 ) ) (q + 1)2. It follows that S ) P q

S2 and that the
spherical harmonics withl e q are an orthonormal basis of
P q

S2
(see also ref 7 and references therein). Following the

TABLE 1: Degree and Number of Nodes in Known Cubature Formulasa

reference Ω ) R2, w(x) ) e-||x||2 Ω ) Rd, w(x) ) e-||x||2 Ω ) S2, w(x) ) 1

24 D ) 15,N ) 44 D ) 11,N ) (4d5 - 20d4 + 140d3 - 130d2 + 96d + 15)/15 D ) 14,N ) 72
23 D ) 31,N ) 172 D ) 11,N ) (4d5 - 20d4 + 140d3 - 130d2 + 96d + 15)/15 D ) 14,N ) 72
25 D ) 17,N ) 110
26 D ) 22,N ) 117
21 D ) 131,N ) 5810
22 D ) 191,N ) 36 864

a The degreeD and number of nodesN in the highest degree cubature formula in each reference is given here. Only formulas with positive
weights and nodes insideΩ were considered. The regions and weight functions areR2 andRd both with Gaussian weight function, and the sphere
S2 with unit weight function.

Ĥ ) L̂2 + V(θ̂, æ̂) (22)

L̂2Yl
m ) l(l + 1)Yl

m (23)

Yl
m(θ, æ) )

Nlm

x2π
sin(θ)|m|Pl

m(cos(θ))eimæ

0 e θ e π, -π e æ e π (24)

Yl
m(x1, x2, x3) )

Nlm

x2π
Pl

m(x3)(x1 + ix2)
m if m g 0

Yl
m ) (-1)m(Yl

|m|)* if m < 0 (25)

〈 f|g〉 ) ∫S2 f *g dσ, ∀f, g ∈ S (26)
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notation of sections 3.1 and 3.2, withw(x) ≡ 1 for x ∈ S2, we
relabel the spherical harmonics so

Given a Hamiltonian of the form of eq 22, we setĤ0 ≡ L̂2. To
construct DVR functions corresponding to the nodes of a given
cubature formula, we choseB ) P q1

S2
, increasingq1 until a

solution U of problem 2 was found. The diagonal DVR
representation of the angular coordinate matrices,Λθ, Λφ, is
obtained by expressing the cubature nodes in angular coordi-
nates. Cubature DVRs and FBRs for spherical problems are then
given by eqs 18 and 21, as explained forΩ ) R2. Results for
a double-well problem on the sphere are given in section 6.2.

5. Comparison with Other Multidimensional DVRs

Here, we briefly survey other types of multidimensional
DVRs. In each case, we point out how coordinate matrices are
defined so that they are commuting. As previously discussed,
the DVR approximation of the potential is then obtained using
the simultaneously diagonal forms of the commuting coordinate
matrices.

5.1. Direct Product DVRs.Until the appearance of refs 5,
6, and 13, the only known multidimensional DVRs were of the
direct product type. This type of DVR is widely used because
of its simplicity and availability. However, the direct product
function spaces often require very large dimension for accurate
approximation of eigenfunctions (see, for example, ref 20 and
Figure 5). This is a major computational bottleneck for current
algorithms, and the quest for improved methods, particularly
the quest for nonproduct DVRs, is an important theme in this
field. A crucial aspect of direct product DVRs is the fact that
the coordinate matrices on direct product function spaces
commute. This is mentioned often in the literature (see, e.g.,
refs 2 and 13) but, as far as we know, not explicitly explained.
The following discussion uses the language of tensor products
to explain this fact.

Direct product DVRs are characterized by two properties:
1. The domainΩ is a (hyper) rectangular domain; that is, it

is a product of one-dimensional, possibly infinite, intervalsΩ
) I1 × ... × Id.

2. The spaceS is a tensor product of spaces of 1 variable
functions defined on these intervals, that is,S ) S1 X ... X Sd,
whereSi ⊂ L2(Ii).

In the following discussion, operators and matrices on the
“small” spacesSi are denoted by smaller font:K̂i denotes an
operator onSi, and Ki is its matrix representation in a given
basis. On the “big” spaceS, an operator and its matrix
representation are denotedK̂ andK.

Matrix representations of operators onS may be easily
expressed as tensor products of smaller matrices. LetK̂1, ... , K̂d

be operators on the corresponding spacesS1, ... , Sd, K̂i: Si f

Si. Write ni ) dim Si and let {φl
(i)}, l ) 1, ... , ni, be an

orthonormal basis ofSi in which theni × ni matrix Ki represents
K̂i. We assume that (Ki)lm ) 〈φl

(i)|K̂i|φm
(i)〉; other possibilities,

which we avoid, arise from approximating these matrix ele-
ments. The set of all productsφl1

(1)‚ ... ‚φld

(d) form an orthonor-
mal basis for the tensor product spaceS. It is immediately seen
thatn ) dim S ) n1‚ ... ‚nd. Ordering the above basis functions
lexicographically (e.g., ifd ) 2, thenφ1 ) φ1

(1)
φ1

(2), φ2 ) φ1
(1)

φ2
(2), φ3 ) φ1

(1)
φ3

(2), ... , φn2 ) φ1
(1)

φn2

(2), φn2+1 ) φ2
(1)

φ1
(2), etc.), we

label them{φ1, ... , φn}. The operatorsK̂i naturally extend to

operatorsK̂i: S f S with n × n matrix representations (Ki)ab

) 〈φa|K̂i|φb〉. However, properties 1 and 2 above imply that it
is unnecessary to directly calculate these inner products.
Knowing the matricesKi, we have

Now suppose that we are given a HamiltonianĤ ) Ĥ0 +
V(x̂) and that evaluation of the matrix (H0)ab ) 〈φa|Ĥ0|φb〉 is
easy with the tensor product basis functionsφa described above.
For example, this is so ifĤ0 is a sum of 1-d HamiltoniansĤ0

) Ĥ1 + ... + Ĥd , with eachĤi depending just on the operators
p̂i ) -ip(∂/∂xi) andx̂i. Then,H0 ) H1 + ... + Hd with eachHi

obtained fromHi as in eq 28. To construct a direct product DVR
approximation of the potential energy matrix, we need to
compute the coordinate matrices (Xi)ab ) 〈φa|x̂i|φb〉; these are
obtained from the matrices (Xi)lm ) 〈φl

(i)|x̂i|φm
(i)〉, as prescribed

in eq 28. The following properties of tensor products of matrices
are necessary to continue the discussion:

1. (A1 X B1)‚(A2 X B2) ) (A1‚A2) X (B1‚B2) if A1, B1 and
A2, B2 can be multiplied.

2. (A1 X A2)† ) A1
† X A2

†.
By property 1, the matricesXi in a direct product DVR are

commuting, [Xi, Xj] ) 0. Let Qi be the unitaryni × ni matrix
such thatQi

†XiQi ) Λi is diagonal. Then, by properties 1 and 2,
the matrix Q ) Q1 X ... X Qd is unitary and the matricesΛi )
Q†XiQ ) In1×n1 X ... X Ini-1×ni-1 X Λi X Ini+1×ni+1 X ... X Ind×nd

are diagonal. Thus, product structure generates commuting
coordinate matrices which give rise to a DVR approximation
of the potential energy operatorV(Λ1, ... , Λd). Here, the joint
eigenvectors of theXi are naturally interpreted as DVR functions,
which are products of the eigenfunctions of theXi (one variable
DVR functions). Note that ifSi ) xωi(xi) P q

Ii, then the nodes
λR ) ((Λ1)RR, ... , (Λd)RR) in the direct product DVR are those
of a degree 2q + 1 product cubature formula.

Despite their shortcomings, direct product DVRs are particu-
larly useful for Hamiltonians of the formĤ ) Ĥ0 + εV(x̂), where
ε is small andĤ0 ) Ĥ1 + ... + Ĥd is a sum of “sub-Hamiltonians”
acting on spacesSi of functions in one variable. In this case,Ĥ
is a small perturbation ofĤ0 and a spaceS spanned by
eigenfunctions ofĤ0, which are products of eigenfunctions of
the Ĥi , is a very natural choice. This is the idea of “potential
optimized” DVR:2 it is a direct product DVR with a sufficient
number (typically a few dozen) of the eigenfunctions of each
Ĥi chosen as the basis functionsφl

(i). These are obtained
numerically, to machine accuracy, using one-dimensional DVRs
with a few hundred basis functions. This step is called
“contraction” in the DVR literature. Where applicable, the
potential optimized DVRs are orders of magnitude more efficient
(i.e., dimS is much smaller without compromising accuracy)
compared to general direct product DVRs. As in all direct
product DVRs, the coordinate matrices in potential optimized
DVR are commuting, a fact that allows the convenient evalu-
ation of the potential matrix.

5.2. Dawes-Carrington Commuting Approximations DVR.
The idea of potential optimized DVR was extended by Dawes
and Carrington to the case of multidimensional sub-Hamilto-
nians.13 As in the discussion of direct product DVRs, we use
small fonts to denote operators and matrices on small spaces
and large fonts to denote operators and matrices on tensor
product spaces. The algorithm in ref 13 is described in the
following setting, which can be naturally generalized. Suppose
thatĤ ) Ĥ12 + Ĥ34 + εV(x̂1, x̂2, x̂3, x̂4), whereĤij is composed of

e1 ) φ1 ) Y0
0, e2 ) φ2 ) Y1

-1, e3 ) φ3 ) Y1
0,

e4 ) φ4 ) Y1
1, etc. Ki ) In1×n1

X ... X Ini-1×ni-1
X Ki X Ini+1×ni+1

X ... X Ind×nd

(28)
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the operatorsx̂i, x̂j, D/Dxi, D/Dxj for i, j ) 1, 2 or 3, 4. Similar to
the case of potential optimized DVR, we chooseS ) S12 X S34

where Sij is spanned by eigenfunctions ofĤij. The nij × nij

(nij ) dim Sij) coordinate matrices onSij are generally noncom-
muting, [Xi, Xj] * 0. Using the simultaneous diagonalization al-
gorithm from ref 27, it is possible to find a unitarynij × nij

matrix Rij so that the sum of squares of the off-diagonal entries
in both Rij

†XiRij, Rij
†XjRij is small (hopefully minimal). The

diagonal matricesΛi ) diag(Rij
†

Xi Rij), Λj ) diag(Rij
†

Xj Rij) are
obtained by setting the off-diagonals to zero and then the
(nondiagonal) matricesXi

DC ) Rij Λi Rij
† ,Xj

DC ) Rij Λj Rij
T are

commuting approximations ofXi, Xj. Commuting coordinate
matrices are then defined onS by Xi

DC ) Xi
DC X In34×n34, for

i ) 1, 2, andXi
DC ) In12×n12 X Xi

DC for i ) 3, 4. The fact that
[Xi

DC, Xj
DC] ) 0 for all i, j ) 1, 2, 3, 4 allows convenient

evaluation of the potential matrix onS in Dawes-Carrington
DVR.

It is very natural to consider replacing the commuting
approximationsXi

DC, Xj
DC of the Dawes-Carrington DVR with

commuting extensionsX̂i , X̂j (see definition 3). Recall that the
cubature DVR coordinate matrices onS˜ are in fact commut-
ing extensions of the coordinate matrices onS. Therefore,
Figures 4 and 9 indicate that commuting extensions may give
better accuracy than commuting approximations. This possibility
further motivates future research on computing commuting
extensions.

5.3. The Littlejohn-Cargo Approach. Apart from ref 13,
the only other published nondirect product multidimensional
DVRs are given, to the best of our knowledge, by Littlejohn
and Cargo in refs 5 and 6. These are based on the notion of
DVR sets,4 reviewed here in section 2.2. An important observa-
tion made in ref 5 is that there is a correspondence between
DVR sets and cubature formulas. Particularly, if ann point
cubature formula with positive weights gives exactly all inner
products in ann-dimensional function spaceS, then the nodes
andS form a DVR set. It is also observed there that if such a
cubature formula hasN points withN > n ) dim(S ), then a
DVR set may be obtained by extending to anN-dimensional
spaceS˜ ⊃ S for which the formula still gives exactly inner
products. Therefore, the task of constructing a DVR set for a
given function spaceS is decomposed in ref 5 to the problem
of finding a suitable cubature formula, and then extendingS
to a larger spaceS˜.

A severe obstacle to finding DVR sets is that there areO(n2)
equations to satisfy (orthogonality of projected delta functions)
and onlyO(n) variables (coordinates of DVR points); note that
this corresponds to the difficulty of constructing cubature
formulas. Thus, refs 5 and 6 suggest to seek DVR sets in which
the nodes are an orbit of a discrete group of transformations,
and in which the DVR basis functions are an orbit of a unitary
representation of the same group. Then, the number of orthogo-
nality conditions is reduced ton, since orthogonality of one
DVR basis function to all others implies orthogonality of any
two. We stress that the correspondence between cubature and
DVR is general, while DVR sets in which the DVR functions
are obtained as an orbit of a group are a special case.

These ideas are combined in ref 5 to obtain a 12 point DVR
set on the sphere: a degree 5 cubature formula is found whose
12 nodes are the vertices of an icosahedron invariant under the
action of a tetrahedral group and whose weights are equal. In
fact, this formula can be obtained by rotating the nodes of
formulaU3: 5-1 from ref 24. These formulas evaluate exactly
all inner products in the nine-dimensional spaceP 2

S2
spanned

by spherical harmonics withl e 2. A three-dimensional

extensionF is needed to obtain a DVR set, and it is argued in
ref 5 that since their cubature formula is tetrahedrally invariant
it makes sense to seek an extension which is an irreducible
invariant subspace of the same tetrahedral group. There are many
such extensions, but we need those for which the cubature
formula evaluates all inner products exactly. Such an extension
F is found within the space of spherical harmonics withl ) 3,
thus giving a DVR set whose nodes are those of the cubature
formula and whose function space isS˜ ) P 2

S2
x F.

Our approach to the calculation of DVR sets differs in two
main points: First, as described in section 3.1, we consider only
the problem of extendingS to S˜ when a cubature formula is
given. The problem of constructing cubature formulas is left to
future work. Second, the algebraic approach of our solution to
the extension problem can accommodate symmetry consider-
ations but is not restricted by them.

6. Numerical Examples

6.1. Cubature DVRs and FBRs for the Plane.In section
4.1, we explained how to apply cubature DVRs and FBRs to
problems whose configuration space isR2 with zero boundary
conditions. Here, this is applied to the Henon-Heiles Hamil-
tonian28

with µ ) 0.111 803 4. A contour plot of the potential appears
in Figure 1. It is a triangular well whose minimum is at the
origin and whose maximum value of 13.333 333 is attained at
the straight line level sets (this is the maximal value of the well,
not of the potential). Each vertex of the triangle is a saddle point.
Note thatĤ ) Ĥ0 + V(x̂1, x̂2), whereV(x̂1, x̂2) ) µ(x̂1

2x̂2 -
x̂2

3/3), andĤ0 is the isotropic harmonic oscillator Hamiltonian.
The cubature formulas used to construct the cubature DVRs

and FBRs are the degree 2q + 1 formulas from refs 8 and 9,
whereq ) 5, 6, 7, and 8 and the number of nodes in each is
26, 35, 46, and 57, respectively. The node locations are
illustrated in Figures 2 and 3 together with the squared absolute
value of typical DVR functions, note the nondirect product
layout. The function spaces used for the cubature FBRs are
S ) exp(-(1/2)(x1

2 + x2
2))P q

R2
, q ) 5, 6, 7, 8, whose dimen-

sion is (q + 1)(q + 2)/2. In the cubature DVRs,S was extended
to spacesS˜, as explained in section 4.1.

Figure 1. Level sets of the Henon-Heiles potential; the setsV(x, y)
) 0, 2, 4, ... , 24 andV(x, y) ) 13.333 333 (straight lines) are shown.
The triangle is a well and each of its vertices a saddle point.

Ĥ ) 1
2(- ∂

2

∂x1
2

- ∂
2

∂x2
2

+ x̂1
2 + x̂2

2) + µ (x̂1
2x̂2 - 1

3
x̂2

3) (29)
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The results are compared to those of two other methods, direct
product DVR obtained from one-dimensional Gauss-Hermite
quadrature (DP DVR) and the algorithm given by Dawes and
Carrington in ref 13 (DC DVR); see section 5 (but bear in mind
that here we have onlyĤ12, so the combination ofĤ12 with Ĥ34

should be ignored now). The function spaces used in DP DVR
are the product spaces exp(-(1/2)x1

2)P q
R X exp(-(1/2)x2

2)P q
R,

q ) 5, 6, 7, 8, whose dimension is (q + 1)2. The function spaces
used in DC DVR were the same as those used in the cubature
FBRs.

Table 2 lists the exact eigenvalues together with errors in
their approximation by the four methods. The exact eigenvalues
were computed using DP DVR withq ) 45 for which the first
45 eigenvalues were observed to converge to 10 decimal digits,
and the remaining eigenvalues up to the 81st were converged
to 4 decimal digits (the table shows only 50 eigenvalues). The
81st eigenvalue is 12.065 039; note that it is below the barrier
energy of 13.333 333. Recall that for eachq ) 5, 6, 7, 8 the
spaceS is spanned by all harmonic oscillator eigenfunctions
with energyE e q + 1. It is interesting to observe the abrupt
error increase in the cub DVR and, to a lesser extent, in the DP

DVR approximations of eigenvalues which are significantly
aboveq + 1 (see also Figure 5).

Figure 4 shows the log of the absolute value of errors in
approximating the first (lowest), fourth, and seventh eigenvalues
in the Henon-Heiles problem using the four methods. Note
the (approximately) linear decrease in log(|error|) for DP DVR,
cub DVR, and cub FBR (see also Figure 9). This is a
manifestation of the “exponential convergence” discussed in ref
4; that is, the error in a given eigenvalue seems to decrease
exponentially with increasingq. Although further tests are
required, it seems that DC DVR based on commuting ap-
proximations has a much slower convergence rate.

Figure 5 gives the errors in all Henon-Heiles eigenvalues
calculated by DP DVR, cubature DVR, and FBR, withq ) 8.

Figure 2. Cubature DVR nodes and functions forR2; this figure
illustrates the nodes in the cubature DVRs used for the Henon-Heiles
problem, together with the squared absolute value of typical DVR basis
functions. The nodes are those of the 11, 13, 15, and 17 degree cubature
formulas constructed in refs 8 and 9 forΩ ) R2, w(x1, x2) ) exp(-x1

2

- x2
2). DVR basis functions were obtained by solving problem 1 of

section 3.1 for these cubature formulas.

Figure 3. Typical DVR function; the squared absolute value|fR|2 of
a typical DVR basis functionfR is shown here, together with the nodes
of the corresponding degree 15 cubature formula used for the Henon-
Heiles problem.

Figure 4. Performance comparison; eigenvalues in the Henon-Heiles
problem were approximated using DP DVR (direct product), cubature
DVR, cubature FBR, and DC DVR. This figure shows log(|error|) in
approximating the first, fourth, and seventh eigenvalues (vertical axis)
versusq (horizontal axis). Note the rapid decay of error with increasing
q in DP DVR, cubature DVR, and FBR but not in DC DVR.

Figure 5. Large errors in high DVR eigenvalues; the error in
approximating Henon-Heiles eigenvalues using cubature DVR, cu-
bature FBR, and DP DVR withq ) 8 is shown. The steep increase of
error restricts DP DVR and cubature DVR to calculation of lower
eigenvalues. However, for this part of the spectrum, the accuracy of
the cubature FBR is similiar at a significantly smaller computational
cost.
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TABLE 2: Results for the Henon-Heiles Problema

a This table gives exact eigenvalues and errors (approximate- exact) of the four different methods applied to the Henon-Heiles problem. DP DVR stands for direct product DVR, cub DVR and cub FBR
stand for cubature DVR and FBR, and DC DVR stands for the Dawes-Carrington algorithm. All numbers were rounded to six decimal digits.
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Thus, 81 eigenvalues are calculated by DP DVR, 57 are
calculated by cub DVR, and 45 by cub FBR. For the first 45
eigenvalues, the errors of the three methods are similiar.
However, the error steeply rises in the additional eigenvalues
provided by DP DVR and cub DVR. These results support our
discussion of section 3.2 in favor of cubature FBRs; the
additional information calculated by DVRs (eigenvalues 46-
81 in this example) may contain large errors. However, cubature
DVRs may possibly overcome this problem in the future.
Presently, DVR basis functions are arbitrarily chosen from the
solutions of problem 3; a refinement is certainly needed.

6.2. DVRs for the SphereS2. We now turn to problems on
the sphereΩ ) S2 discussed in section 3.2. Consider the
HamiltonianĤ ) L̂2 + V̂ whereV(θ, æ) ) 10 sin3 θ(cos3 æ +
sin3 æ); in Cartesian coordinates,V(x1, x2, x3) ) 10(x1

3 + x2
3).

Figure 6 gives a plot of this double-well potential; the well
centered at the point (-1, 0, 0) is due to negativex1 values,
and the well centered at (0,-1, 0) is due to negativex2 values.

The results of cubature DVRs and FBRs obtained from
nonproduct cubature formulas were compared to those of
product cubature FBRs (PC FBR) and to the Dawes-Carrington
method (DC DVR). For the latter three methods, the corre-
sponding function spaces areS ) P q

S2
, with q ) 5, 6, 7, 8, of

dimension (q + 1)2, and in each case, spherical harmonics were
used as basis functions. In cub DVR, the spaceS was extended
to S˜, as explained in section 4.2. The cubature formulas used
in cubature DVR and FBR were the 11th degree formulaU3:
11-3 from ref 24 with 62 nodes, and the 13, 15, 17, degree
formulasU3: 13-2.1(1, 0, 1, 0, 2, 0)- 78,U3: 15-1.1(1, 0, 1,
1, 2, 0)- 86, U3: 17-1.1(1, 0, 1, 1, 3, 0)- 110, from ref 25
with 78, 86, and 110 nodes, respectively. The nodes of these
formulas together with typical DVR functions are illustrated in
Figures 7 and 8. The product formulas used for PC FBR were
obtained as follows: Theθ coordinates of the nodes in a degree
2q + 1 product formula onS2 are cos-1 of theq + 1 nodes in
the degree 2q + 1 Gauss-Legendre formula on [-1, 1]. Theæ
coordinates arem(2π/(2q + 2)), m ) 1, ... , 2q + 2; thus, there
are 2(q + 1)2 nodes. The weights are products of Gauss-
Legendre weights with the constant 1/(2q + 2). The product
cubature FBRs used here were obtained from such product
cubature formulas withq ) 5, 6, 7, and 8, and the number of
nodes in each is 72, 98, 128, and 162, respectively. In ref 30,
several methods are compared for constructing representations
of spherical Hamiltonians, among which is PC FBR. The
conclusion there is that this method is the most accurate and
efficient among the alternatives tested. The DC DVR was
applied in Cartesian coordinates; that is, commuting approxima-
tions of the X1, X2, X3 coordinate matrices were found by
discarding small off-diagonal entries, as explained in section
5.2. In all of our numerical examples, the DC DVR points
((Λ1)aa, (Λ2)aa, (Λ3)aa) were on the sphereS2; it is not clear at
present if this is generally true.

Figure 6. Potential on sphere; illustration of the potentialV(θ, æ) )
10 sin3 θ(cos3 æ + sin3 æ), which in Cartesian coordinates readsV(x1,
x2, x3) ) 10(x1

3 + x2
3). The plotted surface consists of the points

(0.05V(x1, x2, x3) + 1) (x1, x2, x3); that is, standing at any point (x1, x2,
x3) on S2 and looking up (or down) at the plotted surface, its height
above (or below) the sphere’s surface is the normalized value of the
potential function, 0.05V(x1, x2, x3).

Figure 7. Cubature DVR nodes and functions forS2; this figure illustrates the nodes in the cubature DVRs used for the double-well problem on
the sphere, together with the squared absolute value of typical DVR basis functions. The nodes are those of the 11, 13, 15, and 17 degree cubature
formulas from refs 24 and 25 which are specified in the text. DVR basis functions were obtained by solving problem 1 of section 3.1 for these
cubature formulas.
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TABLE 3: Results for Problem on the Sphere

a This table gives exact eigenvalues and errors (approximate- exact) of the four methods applied to the double-well HamiltonianĤ ) L̂2 + 10 sin3 θ(cos3 æ + sin3 æ) on the sphere. PC FBR stands for
product cubature FBR, cub DVR and cub FBR stand for cubature DVR and FBR, and DC DVR stands for the Dawes-Carrington algorithm. All numbers are rounded to six decimal digits.
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The results for the four methods applied to the double-well
problem above are given in Table 3 and Figures 9 and 10. The
“exact” values of theEi were obtained using PC FBR withq )
19, a value for which the first 81 eigenvalues were converged
to 11 decimal digits (Table 3 gives the first 52 eigenvalues).
Note that here PC FBR is not associated with a tensor product
function space. Rather, the same spherical harmonics function
space that is used in cub FBR and DC DVR is also used in PC
FBR. This is the reason that the corresponding columns in Table
3 have equal length whereas in Table 2 the DP DVR column is
longer. Examination of Table 3 shows that, as in the Henon-
Heiles problem, an abrupt cub DVR error increase occurs at
the first eigenvalue which is significantly greater thanq(q +
1). For eachq ) 5, 6, 7, 8, this is the maximalL̂2 eigenvalue
of the spherical harmonic basis functions ofS.

Similiar to the Henon-Heiles problem, the results in Figures
9 and 10 and Table 3 illustrate the good performance of cubature
DVRs and FBRs relative to PC FBR and to DC DVR. Moreover,
Figure 9 indicates that the error in DC DVR decays compara-
tively slowly with increasingq. However, the steep increase of

error in theadditionaleigenvalues produced by cubature DVR
(see Figure 10) suggests that the arbitrary choice of DVR
functions in the solution of problem 3 should be refined.

7. Discussion and Conclusion

The concept of DVR sets was introduced in ref 4 as a general
framework for future development of multidimensional non-
product DVRs (the Dawes-Carrington DVRs13 present an
alternative framework; as far as we can see, the DC DVR
functions are not projectedδ functions) (see section 2.2).
However, except for cases which are simplified by symmetry
(see refs 5 and 6), the calculation of DVR sets remained an
open problem. In section 3.1, we formulated the problem of
calculating DVR sets based on cubature formulas as a linear
algebra problem and solved it in full generality. Our solution
can give families of DVR sets associated with any known
cubature formula; previously, only a few nonproduct DVR sets
were known. As an illustration, we calculate four new non-
product cubature DVRs with up to 110 points for the sphere
and 4 for the plane.

We show that cubature formulas can also give cubature FBRs
(see section 3.2). In contrast to the one-dimensional and direct
product cases, the multidimensional cubature FBRs we suggest
do not use the same function space as the corresponding DVRs.
Rather, cubature FBRs include a projection to a low energy
subspace. The accurate results produced by cubature FBRs, the
relatively low dimensional function spaces used, and the ease
of application all suggest that cubature FBRs can be useful.
This observation is supported by the work of Wang and
Carrington,7 which use an FBR based on Lebedev-Laikov
cubature21 to find bend eigenfunctions of an HF trimer.

Except for product cubature formulas and for refs 5 and 7,
the connection between DVRs, FBRs, and multidimensional
integration formulas has been largely overlooked. Our findings

Figure 8. Typical DVR function; the squared absolute value|fR|2 of
a typical DVR basis functionfR is shown here, together with the nodes
of the corresponding degree 17 cubature formula used for the double-
well problem on the sphere.

Figure 9. Performance comparison; this figure shows the log of the error in approximating the 1st, 8th, and 16th eigenvalues vsq of the double-
well problem withV(θ, æ) ) 10 sin3 θ(cos3 æ + sin3 æ). Note the rapid decay of error with increasingq in cub DVR, cub FBR, and PC FBR but
not in DC DVR. Note that the errors in PC FBR and cub FBR are similar, although the latter requires significantly less computational effort.
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establish general relations between nonproduct cubature for-
mulas and multidimensional DVRs and FBRs. This opens the
door to using any member in the menagerie of existing (positive
weight) cubature formulas for DVR and FBR calculations.

Multidimensional DVR algorithms are inextricably connected
with commuting matrix representations of coordinate operators.
This connection is recognized and explicitly used in ref 13 and
in direct product DVRs; as explained here in section 2.2, this
connection is also implicit in refs 5 and 6. In section 3.1, we
showed that the coordinate matrices in cubature DVRs derived
from an odd degree formula arecommuting extensionsof
noncommuting coordinate matrices. This draws another con-
nection to cubature theory, where an equivalence was shown
to exist between cubature formulas and commuting extensions
of coordinate matrices on weighted polynomial spaces.8-10

Several issues in our approach are presently open and call
for further research.

With the exceptions of refs 21 and 22, there are not that many
high degree nonproduct cubature formulas available. DVR and
FBR calculations would benefit from finding new, very high
order (of at least several dozen), cubature formulas for relevant
domains and weight functions. It should be examined whether
the methods used by Lebedev and Laikov to calculate cubatures
on the sphere, of degree up to 131, can be extended to other
domains and higher degrees. Additionally, a fresh and almost
unexplored point of view on the problem of calculating
cubatures is offered by their equivalence to commuting exten-
sions of coordinate matrices on spaces of weighted polynomials,
as described in refs 8-10.

The problem of constructing cubature DVR sets based on a
known cubature rule was formulated here in problem 3 and was
solved in section 3.1. The solution allows some freedom in the
choice of cubature DVR sets. Figures 5 and 10 indicate that
criteria for optimizing the choice of DVR sets from among the
full family of solutions should be introduced. One possible
approach is to require that the DVR coordinate matrices, whose
matrix elements are calculated using the cubature formula, will
be as close as possible to coordinate matrices calculated with
the exact inner product. In an appropriate basis, this is equivalent
to requiring that the extension blocks in the commuting
extensions associated with a cubature DVR will be as close as
possible to the same blocks in the exact coordinate matrices.
However, it should be kept in mind that our understanding of
nonproduct multidimensional DVRs is still preliminary; it may
turn out that the results in Figures 5 and 10 are a manifestation
of an inherent problem in the DVR approach.

Molecular Hamiltonians are often composed of a sum of
several sub-Hamiltonians and a coupling potential term. It is
often desirable to represent the problem in spaces spanned by
products of eigenfunctions of the sub-Hamiltonians. This is the
idea of potential optimized DVR which is extended to multi-
dimensional sub-Hamiltonians in ref 13. The basic step in ref

Figure 10. Large error in high DVR eigenvalues; here, we show the
error in eigenvalues calculated by cubature DVR, and cubature FBR,
for the double-well problem withV(θ, æ) ) 10 sin3 θ(cos3 æ + sin3

æ). Both cub DVR and cub FBR were based on the degree 11 cubature
formula specified in the text. The steep increase of error in cubature
DVR may be due to the arbitrary choice of solution in problem 3.

Figure 11. Matlab code for constructing DVR sets. This figure gives the code implementing the construction of DVR sets explained in section 2.2.
Note that we use (mostly) Matlab syntax; particularly,A′ meansA transpose conjugate. However, “not equal” is denoted “!)” which is different
from the Matlab “∼)”.
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13 is forming commuting approximations of coordinate matrices
on spaces spanned by eigenfunctions of the sub-Hamiltonians.
It would be interesting to check the possibility of replacing these
commuting approximations with commuting extensions. To do
this, the problem of computing commuting extensions on such
spaces of functions (which are not spaces of weighted polyno-
mials) needs to be addressed.
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